Peer-to-Peer Networking and Tor

In peer-to-peer (P2P) networking, shown in the figure, hosts can operate in both client and server roles. Three types of P2P applications exist: file sharing, processor sharing, and instant messaging. In file sharing P2P, files on a participating machine are shared with members of the P2P network. Examples of this are the once popular Napster and Gnutella. Bitcoin is a P2P operation that involves the sharing of a distributed database, or ledger, that records Bitcoin balances and transactions. BitTorrent is a P2P file sharing network.

Any time that unknown users are provided access to network resources, security is a concern. File-sharing P2P applications should not be allowed on corporate networks. P2P network activity can circumvent firewall protections and is a common vector for the spread of malware. P2P is inherently dynamic. It can operate by connecting to numerous destination IP addresses, and it can also use dynamic port numbering. Shared files are often infected with malware, and threat actors can position their malware on P2P clients for distribution to other users.

Tor is a software platform and network of P2P hosts that function as internet routers on the Tor network. The Tor network allows users to browse the internet anonymously. Users access the Tor network by using a special browser. When a browsing session is begun, the browser constructs a layered end-to-end path across the Tor server network that is encrypted, as shown in the figure. Each encrypted layer is “peeled away” like the layers of an onion (hence “onion routing”) as the traffic traverses a Tor relay. The layers contain encrypted next-hop information that can only be read by the router that needs to read the information. In this way, no single device knows the entire path to the destination, and routing information is readable only by the device that requires it. Finally, at the end of the Tor path, the traffic reaches its internet destination. When traffic is returned to the source, an encrypted layered path is again constructed.

Tor presents a number of challenges to cybersecurity analysts. First, Tor is widely used by criminal organizations on the “dark net.” In addition, Tor has been used as a communications channel for malware CnC. Because the destination IP address of Tor traffic is obfuscated by encryption, with only the next-hop Tor node known, Tor traffic avoids block lists that have been configured on security devices.

Leave a Reply