IPTables Example Configuration

from here

IPTables is a very powerful firewall that allows you to protect your Linux servers. I have been looking for some best practices to protect a server from the Internet and after collecting some examples here and there I came up with the following rules. This will block all the bad stuff, allow inbound SSH and also allows outgoing traffic from the server itself.

Don’t just copy and paste this script as there is always a change to block some legitimate traffic, look at the example and then decide for yourself what you want to use. Having said that, let’s take a look:

*filter
:INPUT DROP [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]

# ACCEPT LOOPBACK
-A INPUT -i lo -j ACCEPT
# FIRST PACKET HAS TO BE TCP SYN
-A INPUT -p tcp ! --syn -m state --state NEW -j DROP

# DROP FRAGMENTS
-A INPUT -f -j DROP

# DROP XMAS PACKETS
-A INPUT -p tcp --tcp-flags ALL ALL -j DROP

# DROP NULL PACKETS
-A INPUT -p tcp --tcp-flags ALL NONE -j DROP

# DROP EXCESSIVE TCP RST PACKETS
-A INPUT -p tcp -m tcp --tcp-flags RST RST -m limit --limit 2/second --limit-burst 2 -j ACCEPT

# DROP ALL INVALID PACKETS
-A INPUT -m state --state INVALID -j DROP
-A FORWARD -m state --state INVALID -j DROP
-A OUTPUT -m state --state INVALID -j DROP

# DROP RFC1918 PACKETS
-A INPUT -s 10.0.0.0/8 -j DROP
-A INPUT -s 172.16.0.0/12 -j DROP
-A INPUT -s 192.168.0.0/16 -j DROP

# DROP SPOOFED PACKETS
-A INPUT -s 169.254.0.0/16 -j DROP
-A INPUT -s 127.0.0.0/8 -j DROP
-A INPUT -s 224.0.0.0/4 -j DROP
-A INPUT -d 224.0.0.0/4 -j DROP
-A INPUT -s 240.0.0.0/5 -j DROP
-A INPUT -d 240.0.0.0/5 -j DROP
-A INPUT -s 0.0.0.0/8 -j DROP
-A INPUT -d 0.0.0.0/8 -j DROP
-A INPUT -d 239.255.255.0/24 -j DROP
-A INPUT -d 255.255.255.255 -j DROP

# ICMP SMURF ATTACKS + RATE LIMIT THE REST
-A INPUT -p icmp --icmp-type address-mask-request -j DROP
-A INPUT -p icmp --icmp-type timestamp-request -j DROP
-A INPUT -p icmp --icmp-type router-solicitation -j DROP
-A INPUT -p icmp -m limit --limit 2/second -j ACCEPT

# ACCEPT SSH
-A INPUT -p tcp --dport 22 -m state --state NEW -j ACCEPT

# DROP SYN-FLOOD PACKETS
-A INPUT -p tcp -m state --state NEW -m limit --limit 50/second --limit-burst 50 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -j DROP

# ALLOW ESTABLISHED CONNECTIONS
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

COMMIT

Explanation of Rules

Accept Loopback Traffic

-A INPUT -i lo -j ACCEPT

We should permit local traffic on the server.

First TCP segment requires SYN bit

-A INPUT -p tcp ! --syn -m state --state NEW -j DROP

When TCP establishes a connection it will perform a 3 way handshake. The first TCP packet always has the SYN bit set. If it doesn’t have this, we will drop the traffic.

No Fragments allowed

-A INPUT -f -j DROP

We don’t allow fragmented IP Packets.

XMAS Packets

-A INPUT -p tcp --tcp-flags ALL ALL -j DROP

A TCP packet that has all the flags set is called a XMAS packet and should never be accepted.

Null Packets

-A INPUT -p tcp --tcp-flags ALL NONE -j DROP

A Null packet is a TCP packet without any flags. This is never used in legitimate traffic so it should be dropped.

Excessive TCP RST Packets

-A INPUT -p tcp -m tcp --tcp-flags RST RST -m limit --limit 2/second --limit-burst 2 -j ACCEPT

The TCP RST (Reset) is used to abort a TCP connection so we shouldn’t see many of these at the same time. They are accepted but limited to 2 per second with a burst of 2.

Invalid Packets

-A INPUT -m state --state INVALID -j DROP
-A FORWARD -m state --state INVALID -j DROP
-A OUTPUT -m state --state INVALID -j DROP

When using stateful packet inspection, a packet can be new, established or related. When it’s not one of these, it is considered invalid and should be dropped.

RFC 1918 Packets

-A INPUT -s 10.0.0.0/8 -j DROP
-A INPUT -s 172.16.0.0/12 -j DROP
-A INPUT -s 192.168.0.0/16 -j DROP

On the Internet we should never see IP packets from private IP addresses so we’ll drop them.

Spoofed Packets

-A INPUT -s 169.254.0.0/16 -j DROP
-A INPUT -s 127.0.0.0/8 -j DROP
-A INPUT -s 224.0.0.0/4 -j DROP
-A INPUT -d 224.0.0.0/4 -j DROP
-A INPUT -s 240.0.0.0/5 -j DROP
-A INPUT -d 240.0.0.0/5 -j DROP
-A INPUT -s 0.0.0.0/8 -j DROP
-A INPUT -d 0.0.0.0/8 -j DROP
-A INPUT -d 239.255.255.0/24 -j DROP
-A INPUT -d 255.255.255.255 -j DROP

We shouldn’t see the ranges above so when we do, they are considered as spoofed and dropped.

ICMP Smurf Attack and Rate Limit

-A INPUT -p icmp --icmp-type address-mask-request -j DROP
-A INPUT -p icmp --icmp-type timestamp-request -j DROP
-A INPUT -p icmp --icmp-type router-solicitation -j DROP
-A INPUT -p icmp -m limit --limit 2/second -j ACCEPT

We allow most ICMP traffic but it is rate-limited.

SSH Connections

-A INPUT -p tcp --dport 22 -m state --state NEW -j ACCEPT

SSH is allowed for remote access.

SYN Flood Protection

-A INPUT -p tcp -m state --state NEW -m limit --limit 50/second --limit-burst 50 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -j DROP

A SYN flood is a DOS attack where the attacker sends a lot of SYN packets but never completes the 3 way handshake. As a result the server will have a lot of “half open” connections and might not be able to serve new connections. Be careful with this setting as this is a global limit.

Established Connections

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

Packets with the “new” state are checked with our first rule, we drop “invalid” packets so at the end we can accept all “related” and “established” packets.

Hopefully this iptables example gives you a template to work on. If you want to protect your device even more you might want to consider looking at the hashlimit module. This allows you to rate-limit traffic based on IP addresses and port numbers, which might be helpful to combat some DOS attacks.

How to check current linux connections

quante tipi di connessioni da un dato ip
netstat -nat | grep 146.0.191.49 | awk ‘{print $6}’ | sort | uniq -c | sort -n

quante porte usate da un dato ip
netstat -nat | grep 146.0.191.49 | awk ‘{print $4}’ | sort | uniq -c | sort -n

numero di connessioni presenti
netstat -atun | awk ‘{print $5}’ | cut -d: -f1 | sed -e ‘/^$/d’ |sort | uniq -c | sort -n

numero totale di connessioni
netstat -nat | awk ‘{ print $5}’ | cut -d: -f1 | sed -e ‘/^$/d’ | uniq | wc -l

numero porte utilizzate
netstat -nat | awk ‘{print $4}’| cut -d: -f2 | sort | uniq -c | sort -n



lsof -ni | egrep -i “10\.0\.8|193\.170”

Subnet mask values and figure out what they mean

Here are the charts, followed by some explanations of what they mean.

CIDR SUBNET MASK WILDCARD MASK # OF IP ADDRESSES # OF USABLE IP ADDRESSES
/32 255.255.255.255 0.0.0.0 1 1
/31 255.255.255.254 0.0.0.1 2 2*
/30 255.255.255.252 0.0.0.3 4 2
/29 255.255.255.248 0.0.0.7 8 6
/28 255.255.255.240 0.0.0.15 16 14
/27 255.255.255.224 0.0.0.31 32 30
/26 255.255.255.192 0.0.0.63 64 62
/25 255.255.255.128 0.0.0.127 128 126
/24 255.255.255.0 0.0.0.255 256 254
/23 255.255.254.0 0.0.1.255 512 510
/22 255.255.252.0 0.0.3.255 1,024 1,022
/21 255.255.248.0 0.0.7.255 2,048 2,046
/20 255.255.240.0 0.0.15.255 4,096 4,094
/19 255.255.224.0 0.0.31.255 8,192 8,190
/18 255.255.192.0 0.0.63.255 16,384 16,382
/17 255.255.128.0 0.0.127.255 32,768 32,766
/16 255.255.0.0 0.0.255.255 65,536 65,534
/15 255.254.0.0 0.1.255.255 131,072 131,070
/14 255.252.0.0 0.3.255.255 262,144 262,142
/13 255.248.0.0 0.7.255.255 524,288 524,286
/12 255.240.0.0 0.15.255.255 1,048,576 1,048,574
/11 255.224.0.0 0.31.255.255 2,097,152 2,097,150
/10 255.192.0.0 0.63.255.255 4,194,304 4,194,302
/9 255.128.0.0 0.127.255.255 8,388,608 8,388,606
/8 255.0.0.0 0.255.255.255 16,777,216 16,777,214
/7 254.0.0.0 1.255.255.255 33,554,432 33,554,430
/6 252.0.0.0 3.255.255.255 67,108,864 67,108,862
/5 248.0.0.0 7.255.255.255 134,217,728 134,217,726
/4 240.0.0.0 15.255.255.255 268,435,456 268,435,454
/3 224.0.0.0 31.255.255.255 536,870,912 536,870,910
/2 192.0.0.0 63.255.255.255 1,073,741,824 1,073,741,822
/1 128.0.0.0 127.255.255.255 2,147,483,648 2,147,483,646
/0 0.0.0.0 255.255.255.255 4,294,967,296 4,294,967,294

* /31 is a special case detailed in RFC 3021 where networks with this type of subnet mask can assign two IP addresses as a point-to-point link.

And here’s a table of the decimal to binary conversions for subnet mask and wildcard octets:

SUBNET MASK WILDCARD
0 00000000 255 11111111
128 10000000 127 01111111
192 11000000 63 00111111
224 11100000 31 00011111
240 11110000 15 00001111
248 11111000 7 00000111
252 11111100 3 00000011
254 11111110 1 00000001
255 11111111 0 00000000

Note that the wildcard is just the inverse of the subnet mask.

 

here the original article